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Surface defects and forces in nematic liquid crystal samples
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The existence of surface defects resulting from the inhomogeneity of the surface treatment in
a nematic liquid crystal sample of definite thickness is investigated. We consider two significant
experimental arrangements for the flat surfaces, in the hypothesis of strong anchoring. By means
of a theoretical model, the force between the surface defects is analytically determined. The forces
are shown to have a nonlinear dependence on the relative displacement between the defects.

PACS number(s): 61.30.Jf, 61.30.Gd

The physical properties of a nematic liquid crystal
(NLC) sample depend on the spatial distribution of the
director field 7. This field coincides with the average
molecular orientation of the molecules forming the phase.
When the director 7 is everywhere parallel to a plane, it
may be written in terms of one angle (twist or tilt angle,
according to the experimental situation considered) [1,2].
The evaluation of the director field or of, say, the tilt an-
gle is performed in the frame of the elastic continuum
theory [3]. This elastic theory has been formulated long
ago by Ericksen [4] and Leslie [5] and it is mainly applied
to the study of one-dimensional problems, in which all
the physical quantities depend on one coordinate [6].

It is well known that in the absence of external fields,
the director 77 depends on the surface treatment. Ac-
cording to the treatment it is possible to characterize
surface nonhomogeneities influencing the NLC orienta-
tion. Recently, this influence was analyzed by means of a
complete analytical model 7] in the situations of strong
and weak anchoring at the surfaces. The analysis was
proposed in order to improve the definition of the sur-
face energy [8] in a continuum description, and in order
to connect the anchoring energy experimentally detected
with the random distribution of the easy axes. The same
analysis [7] was extended in order to describe walls of ori-
entation induced by sharp variations of the surface treat-
ment [9]. These discontinuities in the surface molecu-
lar orientation are responsible for the presence of surface
defects and forces between them. Previous elastic mod-
els were applied to analyze two-dimensional systems by
Lonberg and Meyer [10] and Kléman [11], among others
[1,2]. The analysis of Ref. [10] dealt with periodic pat-
terns induced by external field in samples characterized
by uniform surface treatment. On the other hand, the
fundamental work of Kléman [11] was mainly devoted to
the analysis of surface defects in the absence of external
fields. More recently, an experiment was performed in
which a topological (bulk) line defect is forced to move
with constant speed under the action of an applied volt-
age [12]. This kind of experiment can be used to study
viscous effects near the highly strained core region, and is
very useful for the understanding of nonlinear dynamics
in liquid crystalline systems.
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In this paper, the model proposed and applied in Refs.
[7] and [9] is used to determine the forces between de-
fects in a NLC sample characterized by nonhomogeneous
surfaces, in the absence of external field. We are deal-
ing here with a kind of surface defects resulting from
the inhomogeneities in the treatment of the flat surfaces
limiting a NLC sample. A force appears between these
surface defects and is analytically determined.

Let us consider a nematic slab of thickness d. The
Cartesian reference frame is chosen with the z axis nor-
mal to the bounding plates, located at z = £d/2. The =
axis is parallel to the direction along which the surface
tilt angle is expected to change, and the tilt angle § made
by the nematic director with the z axis, is supposed to
be y independent. In the one constant approximation,
K11 = Ky = K33 = K, the bulk free energy density due
to elastic distortions is given by [1]

fo = 3K(V0)?, (1)
where V0 = i(80/0z) +k(86/z), with i and k being the
unit vectors parallel to the z and z axes, respectively.
Thus, the total bulk elastic free energy per unit length
along y will be

oo d/2 1 .

Flo(z, 2)] :/ dz/ dz LK (V). 2)
—oo —d/2 2

The principle of the continuum theory states that the ac-

tual director profile, or §(z, z), is deduced by minimizing

the total free energy given by (2). Usual calculations give
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The solution is a harmonic function 6(z, z), which needs
to satisfy appropriated boundary conditions. Let us ini-
tially analyze the general situation of strong anchoring
in both surfaces, namely,

0(z,+d/2) = O4(x), (4)
where ©4(z) accounts for the surface orientation im-
posed by the surface treatment, i.e., the easy axes on
the upper and lower surfaces, respectively.
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It is possible to show [7,9] that the solution of Eq. (3),
satisfying boundary conditions (4), can be expressed in
terms of propagators as

0(z, z) = /oo (G (' — 2,2)0, ()

—00

+G_(z' — z,2)0_(z')]d=’, (5)
where

cos(mwz/d)

Gi(e' —2,2) = 2d cosh[m(z' — x)/d] F sin(rz/d)’

(6)

Equations (5) and (6) give the complete solution of the
problem in the strong anchoring hypothesis. The same
analysis can be carried out for the case of weak anchor-
ing at the surfaces. For completeness, we present also
the general equations for the case of weak anchoring.
This situation can be analyzed by taking into account
the existence of a finite surface energy, which we will as-
sume to be of the kind proposed by Rapini and Papoular
[13], i.e., fs = (W/2)(8 — ©)2, where W is the anchoring
strength. The strong anchoring case corresponds to the
limit W — oo. The total elastic free energy of the ne-
matic sample, per unit length along the y axis is given
by Eq. (2) plus the surface terms, namely,

Flo(z,2)] = / dz /Z K(V)?
+/_w1[w [0 (z) - ©_(a)]?

+W_ [0, (2) — O, ()] | da (7)

where 04 (x) is the actual value of the surface tilt angle
and W_ and W, refer to the lower and upper surface,
respectively. For simplicity’s sake, we present only the
case of symmetric surfaces, i.e., W_ = W, = W. In this
case of weak anchoring, in order to determine the profile
of the tilt angle we need to solve Eq. (3), but now subject
to the boundary conditions [14]:

o9

+ 6+ (z) —
az] z=+d/2

:t:L[ O1(z) = 0. (8)

In Eq. (8), L = K/W is the extrapolation length [11].
The general solution for the weak anchoring situation
can be written in the form

Ow (x, z) = /0" [Gi(z' — z,2)04 ()

—0o0

+G_(z' — z,2)0_(z')]dz’. (9)

By substituting the general solution into the boundary
conditions (8), we obtain
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This completes the mathematical tool to determine the
profile of the tilt angle in the slab.

Within the framework of the general equations we have
presented it is possible to investigate the presence of sur-
face defects and the formation of walls of orientation in
the nematic medium, as a consequence of the surface in-
homogeneities [9]. With this aim in mind we will consider
in detail two particular but experimentally relevant sit-
uations, characterized by different arrangements of the
surfaces in the slab. From now on, we will consider only
the strong anchoring situation, which is closer to the ex-
perimental one when we are dealing with treated surfaces.

Let us exemplify by considering the arrangement for

which
G)_.(QZ): { O3, <A

_ 91, z <0
@+(.’E) - { 62, T > 0, @4, z > A.
(11)

In this case, we have initially four distinct surfaces, char-
acterized by four different easy directions. There are
two points in which the nematic orientation can change
abruptly on the surfaces. These points are horizontally
displaced by a quantity A. Taking into account the
boundary conditions (11) and applying Egs. (5) and (6)
we obtain for the tilt angle

0
b(z,z) = O, / Gi(z' — z,z)dz’
+@2/ Gi(z' — z,2)dx’
0
A
+03 / G_(z' — z,z)dz’

+®4/ G_(z' — z,z)dz’.
A

The integrations are performed easily, giving

0(3:, Z) = (61 + ez) ty + (@1 - @2) to
+(O3 + O4) ts + (O3 — O4) iy, (12)

where the quantities ¢;, ¢ = 1, ...,4 have been introduced
to save space. They are defined in the following way:

t; = arctan[A(z)], (13)

ty = arctan [A(z) tanh (%)] s (14)

t; = arctan [ (15)

=elf

tqy = arctan [[A(z)]“tanh (%ﬁl)] , (16)
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where
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1+ sin(ﬂ“;m
Alz) = \/T—Ei‘{(m/d)‘ (17)

For the case of two surfaces whose easy axes are such that ®; = @, and ©, = O3 (case I), the solution (12), by

taking into account Egs. (13)—(17), becomes

0(z,2) = 9217 92) o ©2)

+

[1 + sin(nz/d)] tanh[rz/2d] + [1 — sin(nz/d)] tanh[m(A — z)/2d]

(©2 — ©4)

arctan [

cos(mz/d)(1 + tanh[mrz/2d] tanh[r (A — z)/2d])

] . (18)

A similar structure arises when we consider the case corresponding to two surfaces whose easy axes are such that
©; = O3 and Oy = O4 (case II). The (z, z) profile is given by

_(01+03)
==
(02 — ©4)

0(z, z)

[1 + sin(7z/d)] tanh[rz/2d] — [1 — sin(7z/d)] tanh|[r (A — )/2d]

—-————% arctan
™

which can be obtained from (18) by changing ©; = O,
and A —z - —(A — z). These solutions (18) and (19)
describe walls of orientation, which are induced in the ne-
matic medium by the inhomogeneity of the surface treat-
ment [9]. In both situations we have a slab of thickness
d with two disclinations localized at * = 0,z = d/2 and
z=Az=—d/2.

The total elastic energy F' of our system can be cal-
culated from Eq. (2) for the strong anchoring situation.
We observe that, due to the presence of a relative hor-
izontal displacement A between the disclinations at the
surfaces, these quantities are now explicit functions of
A. If we assume as a normal configuration the one for
which A = 0, it is possible to define an excess of elastic
energy, relatively to this configuration, whose origin is
directly connected with the presence of the quantity A.
We obtain through Eq. (2) the following results:

E(A) = F(A) — F(A = 0)
= ¢§(®2 —©0;)%In (cosh [%D , (20)

where (—) and (+) refer, respectively, to cases I and II.

On dimensional grounds, it is possible to define a force
per unit length along y, between the surface defects,
whose component in the z direction is given by

OE(A)
= ——". 21
) = -8 (21)
According to the boundary conditions, we are able to
show that this force can be attractive or repulsive. In
fact, from (20) and (21) we obtain for the force, the fol-
lowing expression

_ e, -
F(A) = iK@lﬁ(ﬂ tanh (53) , (22)

cos(mz/d)(1 — tanh[rz/2d] tanh[w(A — z)/2d])

] , (19)

which is repulsive for the first arrangement (case I) and
attractive for the second one (case II). A linear behav-
ior is found when A <« d, because f(A) «x £A. On the
contrary, for high values of A, the force tends to a con-
stant value f ~ +K(©; — ©1)%/2d. We can observe that
for case II, E, as given by Eq. (20), is a positive quan-
tity, whereas for case I, E is negative, for any value of
A. This indicates that the configuration for which A =0
is the stable one only for case II. The other arrangement
(case I), for which E < 0 when A # 0, indicates that
the situation A = 0 is unstable. The order of magnitude
of this force can be estimated by assuming A ~ d, and
O3 — ©; = /2. For a sample of thickness d = 10 pm and
K ~107°% dyn, we obtain f ~ 1072 dyn/cm.

In this paper we have analyzed the effect of surface in-
homogeneities on the nematic orientation. We have con-
sidered two possibly relevant experimental arrangements
where the surfaces of a slab of thickness d, characterized
by different easy directions, are horizontally displaced by
a quantity A. These arrangements are responsible for the
appearence of walls of orientation in the nematic sample.
In particular, we have explicitly determined the forces
between surface defects in the slab for the situation of
strong anchoring at the surfaces. This force is found to
be a nonlinear function of the relative horizontal displace-
ment between the defects. A possible experimental set-up
can be built in order to explore this interesting nonlin-
ear behavior of the force since it can be connected to the
effective viscosity of the system [12]. However, for this
kind of experiment it could be more convenient to ana-
lyze the behavior of the entire system under the action
of an external field. This general analysis is presently in
progress.
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